\(\int \frac {(a+a \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\) [197]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 211 \[ \int \frac {(a+a \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {4 a^3 (9 A+5 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^3 (3 A+5 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}-\frac {4 a^3 (6 A-5 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 a A (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (9 A+5 B) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}} \]

[Out]

2/5*a*A*(a+a*sec(d*x+c))^2*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/15*(9*A+5*B)*(a^3+a^3*sec(d*x+c))*sin(d*x+c)/d/sec(
d*x+c)^(1/2)-4/15*a^3*(6*A-5*B)*sin(d*x+c)*sec(d*x+c)^(1/2)/d+4/5*a^3*(9*A+5*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/c
os(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+4/3*a^3*(3*A+5*B)*
(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x
+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {4102, 4082, 3872, 3856, 2719, 2720} \[ \int \frac {(a+a \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {4 a^3 (6 A-5 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{15 d}+\frac {2 (9 A+5 B) \sin (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{15 d \sqrt {\sec (c+d x)}}+\frac {4 a^3 (3 A+5 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {4 a^3 (9 A+5 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^2}{5 d \sec ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[((a + a*Sec[c + d*x])^3*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(4*a^3*(9*A + 5*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^3*(3*A + 5*B)
*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) - (4*a^3*(6*A - 5*B)*Sqrt[Sec[c + d*x]
]*Sin[c + d*x])/(15*d) + (2*a*A*(a + a*Sec[c + d*x])^2*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*(9*A + 5*B)
*(a^3 + a^3*Sec[c + d*x])*Sin[c + d*x])/(15*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4082

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Dist[1/(n + 1), Int[(d
*Csc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e,
 f, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rule 4102

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a A (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2}{5} \int \frac {(a+a \sec (c+d x))^2 \left (\frac {1}{2} a (9 A+5 B)-\frac {1}{2} a (A-5 B) \sec (c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a A (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (9 A+5 B) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {4}{15} \int \frac {(a+a \sec (c+d x)) \left (\frac {1}{2} a^2 (21 A+20 B)-\frac {1}{2} a^2 (6 A-5 B) \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx \\ & = -\frac {4 a^3 (6 A-5 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 a A (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (9 A+5 B) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {8}{15} \int \frac {\frac {3}{4} a^3 (9 A+5 B)+\frac {5}{4} a^3 (3 A+5 B) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx \\ & = -\frac {4 a^3 (6 A-5 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 a A (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (9 A+5 B) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {1}{3} \left (2 a^3 (3 A+5 B)\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (2 a^3 (9 A+5 B)\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx \\ & = -\frac {4 a^3 (6 A-5 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 a A (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (9 A+5 B) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {1}{3} \left (2 a^3 (3 A+5 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{5} \left (2 a^3 (9 A+5 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {4 a^3 (9 A+5 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^3 (3 A+5 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}-\frac {4 a^3 (6 A-5 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 a A (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (9 A+5 B) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.58 (sec) , antiderivative size = 207, normalized size of antiderivative = 0.98 \[ \int \frac {(a+a \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {a^3 e^{-i d x} \sqrt {\sec (c+d x)} (\cos (d x)+i \sin (d x)) \left (216 i A \cos (c+d x)+120 i B \cos (c+d x)+40 (3 A+5 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-8 i (9 A+5 B) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+3 A \sin (c+d x)+60 B \sin (c+d x)+30 A \sin (2 (c+d x))+10 B \sin (2 (c+d x))+3 A \sin (3 (c+d x))\right )}{30 d} \]

[In]

Integrate[((a + a*Sec[c + d*x])^3*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(a^3*Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*((216*I)*A*Cos[c + d*x] + (120*I)*B*Cos[c + d*x] + 40*(3*A + 5
*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - (8*I)*(9*A + 5*B)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*
x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + 3*A*Sin[c + d*x] + 60*B*Sin[c + d*x] + 30*A*Sin[
2*(c + d*x)] + 10*B*Sin[2*(c + d*x)] + 3*A*Sin[3*(c + d*x)]))/(30*d*E^(I*d*x))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(518\) vs. \(2(239)=478\).

Time = 22.65 (sec) , antiderivative size = 519, normalized size of antiderivative = 2.46

method result size
default \(-\frac {4 a^{3} \left (-12 A \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (21 A +5 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (9 A +10 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+15 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-27 A \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-15 B \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{15 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(519\)
parts \(\text {Expression too large to display}\) \(871\)

[In]

int((a+a*sec(d*x+c))^3*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-4/15*a^3*(-12*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+
2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(21*A+5*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*(-
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(9*A+10*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+15*A*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)-27*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x
+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+25*B*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+si
n(1/2*d*x+1/2*c)^2)^(1/2)-15*B*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*
x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 197, normalized size of antiderivative = 0.93 \[ \int \frac {(a+a \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (3 \, A + 5 \, B\right )} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (3 \, A + 5 \, B\right )} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (9 \, A + 5 \, B\right )} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (9 \, A + 5 \, B\right )} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (3 \, A a^{3} \cos \left (d x + c\right )^{2} + 5 \, {\left (3 \, A + B\right )} a^{3} \cos \left (d x + c\right ) + 15 \, B a^{3}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{15 \, d} \]

[In]

integrate((a+a*sec(d*x+c))^3*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

-2/15*(5*I*sqrt(2)*(3*A + 5*B)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(2)*(3*
A + 5*B)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*(9*A + 5*B)*a^3*weierstra
ssZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*(9*A + 5*B)*a^3*weierst
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (3*A*a^3*cos(d*x + c)^2 + 5*(3*A
+ B)*a^3*cos(d*x + c) + 15*B*a^3)*sin(d*x + c)/sqrt(cos(d*x + c)))/d

Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=a^{3} \left (\int \frac {A}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx + \int \frac {3 A}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {3 A}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int A \sqrt {\sec {\left (c + d x \right )}}\, dx + \int \frac {B}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {3 B}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int 3 B \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \sec ^{\frac {3}{2}}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate((a+a*sec(d*x+c))**3*(A+B*sec(d*x+c))/sec(d*x+c)**(5/2),x)

[Out]

a**3*(Integral(A/sec(c + d*x)**(5/2), x) + Integral(3*A/sec(c + d*x)**(3/2), x) + Integral(3*A/sqrt(sec(c + d*
x)), x) + Integral(A*sqrt(sec(c + d*x)), x) + Integral(B/sec(c + d*x)**(3/2), x) + Integral(3*B/sqrt(sec(c + d
*x)), x) + Integral(3*B*sqrt(sec(c + d*x)), x) + Integral(B*sec(c + d*x)**(3/2), x))

Maxima [F]

\[ \int \frac {(a+a \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^3*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^3/sec(d*x + c)^(5/2), x)

Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^3*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^3/sec(d*x + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^3}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^3)/(1/cos(c + d*x))^(5/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^3)/(1/cos(c + d*x))^(5/2), x)